

 Navigation

 	
 index

 	
 next |

 	Money 2.0 documentation

Money for PHP

	Why a Money library for PHP?
	The goal

	Getting started
	Autoloading

	Immutability

	Allocation

	Inspiration

 Copyright 2011, Mathias Verraes.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Money 2.0 documentation

Why a Money library for PHP?

Also see http://blog.verraes.net/2011/04/fowler-money-pattern-in-php/

This is a PHP implementation of the Money pattern, as described in [Fowler2002] :

A large proportion of the computers in this world manipulate money, so it’s always puzzled me
that money isn’t actually a first class data type in any mainstream programming language. The
lack of a type causes problems, the most obvious surrounding currencies. If all your calculations
are done in a single currency, this isn’t a huge problem, but once you involve multiple currencies
you want to avoid adding your dollars to your yen without taking the currency differences into
account. The more subtle problem is with rounding. Monetary calculations are often rounded to the
smallest currency unit. When you do this it’s easy to lose pennies (or your local equivalent)
because of rounding errors.

	[Fowler2002]	Fowler, M., D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford, Patterns of Enterprise Application Architecture, Addison-Wesley, 2002. http://martinfowler.com/books.html#eaa

The goal

Implement a reusable Money class in PHP, using all the best practices and taking care of all the
subtle intricacies of handling money. I hope to add a lot more features, such as dealing with major
units and subunits in currencies, currency conversion, string formatting and parsing, ...
Other ideas include integration with Doctrine2, which should make it easier to store money
in a database transparently.

 Copyright 2011, Mathias Verraes.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Money 2.0 documentation

Getting started

All amounts are represented in the smallest unit (eg. cents), so USD 5.00 is written as

<?php
$fiver = new Money(500, new Currency('USD'));
// or shorter:
$fiver = Money::USD(500);

Autoloading

You’ll need an autoloader. Money is PSR-0 compatible, so if you are using the Symfony2 autoloader, this will do:

<?php
use Symfony\Component\ClassLoader\UniversalClassLoader;

$loader = new UniversalClassLoader;
$loader->registerNamespaces(array(
 'Money' => __DIR__ . '/vendor/money/lib/',
));
$loader->register();

 Copyright 2011, Mathias Verraes.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Money 2.0 documentation

Immutability

Jim and Hannah both want to buy a copy of book priced at EUR 25.

<?php
$jim_price = $hannah_price = Money::EUR(2500);

Jim has a coupon for EUR 5.

<?php
$coupon = Money::EUR(500);
$jim_price->subtract($coupon);

Because $jim_price and $hannah_price are the same object, you’d expect Hannah to now have the reduced
price as well. To prevent this problem, Money objects are immutable. With the code above, both
$jim_price and $hannah_price are still EUR 25:

<?php
$jim_price->equals($hannah_price); // true

The correct way of doing operations is:

<?php
$jim_price = $jim_price->subtract($coupon);
$jim_price->lessThan($hannah_price); // true
$jim_price->equals(Money::EUR(2000)); // true

 Copyright 2011, Mathias Verraes.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Money 2.0 documentation

Allocation

My company made a whopping profit of 5 cents, which has to be divided amongst myself (70%) and my
investor (30%). Cents can’t be divided, so I can’t give 3.5 and 1.5 cents. If I round up,
I get 4 cents, the investor gets 2, which means I need to conjure up an additional cent. Rounding
down to 3 and 1 cent leaves me 1 cent. Apart from re-investing that cent in the company, the best solution
is to keep handing out the remainder until all money is spent. In other words:

<?php
$profit = Money::EUR(5);
list($my_cut, $investors_cut) = $profit->allocate(array(70, 30));
// $my_cut is 4 cents, $investors_cut is 1 cent

// The order is important:
list($investors_cut, $my_cut) = $profit->allocate(array(30, 70));
// $my_cut is 3 cents, $investors_cut is 2 cents

 Copyright 2011, Mathias Verraes.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	Money 2.0 documentation

Inspiration

	https://github.com/RubyMoney/money

	http://css.dzone.com/books/practical-php-patterns/basic/practical-php-patterns-value

	http://www.codeproject.com/KB/recipes/MoneyTypeForCLR.aspx

	http://www.michaelbrumm.com/money.html

	http://stackoverflow.com/questions/1679292/proof-that-fowlers-money-allocation-algorithm-is-correct

	http://timeandmoney.sourceforge.net/

	https://github.com/lucamarrocco/timeandmoney/blob/master/lib/money.rb

	http://joda-money.sourceforge.net/

	http://en.wikipedia.org/wiki/Currency_pair

	https://github.com/RubyMoney/eu_central_bank

	http://en.wikipedia.org/wiki/ISO_4217

 Copyright 2011, Mathias Verraes.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	Money 2.0 documentation

Index

 Copyright 2011, Mathias Verraes.
 Created using Sphinx 1.3.4.

 search.html

 Navigation

 		
 index

 		Money 2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Mathias Verraes.
 Created using Sphinx 1.3.4.

_static/up-pressed.png

_static/down.png

CurrencyConversion.html

 Navigation

 		
 index

 		Money 2.0 documentation »

Currency Conversion

To convert a Money instance from one Currency to another, you need a CurrencyPair.
You can use the OOP notation to define a pair:

<?php
$pair = new CurrencyPair(new Currency('EUR'), new Currency('USD'), 1.2500);

You can also parse ISO notations. For example, the quotation EUR/USD 1.2500
means that one euro is exchanged for 1.2500 US dollars.

<?php
$pair = CurrencyPair::createFromIso('EUR/USD 1.2500');

That should make it easy to work with external sources of conversion rates. (Note
that if you build integrations with such services, we’ll happily take your pull requests!)

After you have the pair, it’s dead simple:

<?php
$eur100 = Money::EUR(100);
$usd125 = $pair->convert($eur100);

 © Copyright 2011, Mathias Verraes.
 Created using Sphinx 1.3.4.

_static/comment-close.png

_static/down-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

